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BIOSTATISTICS 
WITH R

SUMMER WORKSHOP 
(MITGEST network)

 
24-27 JULY 2024

Maria Chiara Mimmi, PhD



WORKSHOP SCHEDULE

• 4 days
• 1. Intro to R and data analysis
• 2. Statistical inference & hypothesis testing
• 3. Modeling correlation and regression
• 4. Machine Learning; MetaboAnalyst; Power Analysis

• Each day will include:
• Frontal class (MORNING)
• Practical training with R about the topics discussed in the morning. 

(AFTERNOON)
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DAY 2 – LECTURE OUTLINE
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• Purpose and foundations of inferential statistics
• Probability and random variables 
• Meaningful probability distributions
• Sampling distributions and Central Limit Theorem

• Getting to know the “language” of hypothesis testing
• The null and alternative hypothesis
• The probability of error? (α or “significance level")
• The p-value probability and tests interpretation
• Confidence Intervals
• Types of errors (Type 1 and Type 2)
• Effective vs statistical significance

• Hypothesis tests examples
• Comparing sample mean to a hypothesized population mean (Z test & t test)
• Comparing two independent sample means (t test)
• Comparing sample means from 3 or more samples (ANOVA)

• A closer look at testing assumptions (with examples) 
• Testing two groups that are NOT independent 
• Testing if the data are not normally distributed: non-parametric tests
• Testing samples without homogeneous variance of observations



Inferential Statistics: population and samples

Gathering all data is not always possible due to barriers like time, accessibility, or cost. 

Therefore, we often gather information from a smaller subset of the population: a SAMPLE.

• POPULATION = the universe of all possible observations we are interested in

• SAMPLE = a subset of the population from which information is actually collected

• INFERENTIAL STATISTICS = a collection of methods for using sample data to make 
conclusions about a population
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Inferential statistics workflow: defining a population
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Research 
question…

Decide which population(s) is (are) important
• We may need 2 of them—control and treated groups—according to the experimental design
• Statistical populations are something the investigator defines

Decide which attributes of the population(s) need to be measured
• Variable(s) to measure
• (… not all relevant information are MEASURABLE)
• often the literature can provide information about the general population we are studying

Source image: https://stats.libretexts.org/Courses/Lumen_Learning/

https://stats.libretexts.org/Courses/Lumen_Learning/


Inferential statistics workflow: producing data

Source image: https://stats.libretexts.org/Courses/Lumen_Learning/
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• Pick a representative sample
• A sample is a subset of a population that has been selected to be representative (or 

unbiased), i.e. it REFLECTS the characteristics of the entire population
• ideally, a random sample, where each individual has a known, non-zero probability of 

being selected  into the sample

• Estimate the population parameter 
 
• From a representative sample, we 

can calculate a point estimate of 
the population  parameter 
(unknown)

• Estimate uncertainty
• Sampling error: any point estimate 

from the sample will be imperfect 
(it won’t exactly match the true 
population value)

https://stats.libretexts.org/Courses/Lumen_Learning/


Inferential statistics workflow: making inference based on 
sample
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Formulate hypotheses to test through experiments:

• features of a population

• interaction of dependent and independent variables

• degree of uncertainty and error

Generalize findings to population of interest, assessing:

• construct validity

• validity of causal relationship

• generalizability

Source image: https://stats.libretexts.org/Courses/Lumen_Learning/

https://stats.libretexts.org/Courses/Lumen_Learning/


Population versus sample: terms  
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Source: https://www.statology.org/statistic-vs-parameter/

https://www.statology.org/statistic-vs-parameter/


www.R4biostats.com 9

Probability 
and 

random variables



Probability & statistical models (in frequentist approach)
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• Data are observed values («realizations») of random variables. 
• The probability distribution of these random variables can be used to reason 

about properties (‘parameters’) of the unobserved universe (inference).
• Statistical models are probability distributions for observable data constructed to 

enable inferences to be drawn or decisions made from data
• From observation to theoretical probability:

• Absolute frequency (af)  Relative frequency (rf)  

• Relative frequencies also serve as “empirical probabilities”, [between 0 and 1].

• Relative frequency Probability of an event (p) 

• The relationship between Absolute Frequency and Probability is further 
reinforced by the Law of Large Numbers

Relationship (af  - probability)  p   

(By conducting a larger number of trials or observations) 
we can derive probabilities from absolute frequency! 



The Law of Large Numbers allows us to use 
probability to predict absolute frequency and 
viceversa
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Random Variables and probability distributions

• can take a finite number of distinct values
• e.g. # of children per family

Discrete Random Variables 

• can take an infinite (or impossible to count) 
number of possible values
• e.g. weight of a person

Continuous Random Variables 

2 types of probability distributions

PROBABILITY DISTRIBUTION PROBABILITY DENSITY FUNCTION

The probability distribution describes the 
likelihood of the variable to take a possible 
individual value.

It is called: Probability Mass Function (PMF)

 

(Since  = 0  ) the probability distribution 
describes the likelihood of the variable to fall 
within an interval of values.

It is called: Probability Density Function (PDF)

P[a
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Random Variables and probability distributions

Discrete Random Variables Continuous Random Variables 

SOME “FAMOUS” DISTRIBUTIONS

• Bernoulli Random Variable   X Bernoulli(p)∼
• applicable to random experiments that can only have 

1 trial and only 2 possible results -like above (e.g. 
pass/fail, head/tail)

• Binomial Random Variable   X Bin(n,p)∼
• applicable to Bernoulli experiments (2 possible 

results), but here we can have 1 or more trials (e.g. 
probability that # patients will experience side effects 
from a new medication)

• Poisson Random Variable     X Poisson(∼ λ)
• used to show how many times an event will occur 

within a given time period – knowing events occur 
independently and with a constant mean rate (e.g. # 
of meteorites striking Earth in a year)

• Normal Random Variable    X (∼ μ,σ2)
• more on its feature later… (e.g. birthweight of 

newborn babies, shoe sizes, diastolic blood 
pressure, …)

• Exponential Random Variable   X Exp(∼ λ)
• refers to the process in which the event happens 

at a constant average rate independently and 
continuously (e.g. , the amount of time until an 
earthquake occurs, amount of time a car battery 
lasts)



Meaningful probability distributions for 
inference
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The normal distribution



The normal distribution (special case of continuous distr.) 
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• The normal distribution («bell curve» or «Gaussian curve») is extremely important in 
statistics because:
• it provides an excellent summary of an empirical distribution providing 2 parameters: the 

mean (μ)  and standard deviation (σ)
• many things in real life (and experimental science) can be approximated with it (e.g. blood 

pressure, height, weight, age children get disease, standardized test scores, etc.)
• Measurement error with scientific instruments is typically modelled as a normal 

distribution with expectation μ=0. The more precise the instrument, the lower the value of 
the variance σ2.

Normally distributed  Random Variable     
X  Normal (∼ μ,σ2)

with 
Probability Density Function
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Features of the normal distribution
• Normal distributions are symmetric around the mean
• The mean, median and mode of a normal distribution are equal
• Normal distributions are denser in the center and less dense in the tails
• The area under the normal curve is = 1
• 68% of the area of a normal distribution is within 1 standard deviation of the mean
• Approximately 95% of the area of a normal distribution is within 2 standard deviation of the 

man

X  Normal (∼ μ,σ2)



Sampling distributions and the CLT
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From population, to sample, to sampling distribution
• A sampling distribution shows the frequency distribution of n sample 

means (e.g. , , … ), assuming that we take several random samples of the 
population
• with large n it approximates a normal

Source image:  https://www.youtube.com/watch?v=7S7j75d3GM4

https://www.youtube.com/watch?v=7S7j75d3GM4
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Dealing with the uncertainty of point estimates
• The premise of (frequentist) statistics is that we can approximate a hypothetical population 

parameter by studying (or simulating) several samples from from it 

• A point estimate (e.g. ) will always have a degree of uncertainty:
• sampling error = the variability or ‘noise’ that comes with the process of taking repeated samples 

from a population of  interest (i.e. each sample will be a little different)
• standard error = a quantitative measure of sampling error variation (the standard deviation of the 

estimate’s sampling distribution) 

Mine Çetinkaya-Rundel

Source image:  https://vizdata.org/slides/16/16-uncertainty-I.html#/

https://vizdata.org/slides/16/16-uncertainty-I.html#/


Central Limit Theorem and Sampling Distributions
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PROBLEM: How often do we know what the population of values looks like? 

• (i.e. what if the observations in our sample are not normally distributed?)

SOLUTION: the Central Limit Theorem provides a bridge between (a) the 
nice properties of the normal distribution and (b) the fact that the 
distribution of individual elements of many samples are not normally 
distributed
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CLT: fundamental for inferences about a population 
based on a sample
CLT: regardless of the shape of the population distribution, if we take several 
random samples from a population and look at all their mean:   = …  :  

• by the Central Limit Theorem, the distribution of sample means   (a “sampling 
distribution”) will have a normal (or near normal) shape with mean  (= the 
population’s) and standard deviation  =   (this is called Standard Error, < 
than population’s)
• IF is large enough and 
• IF samples are taken at random



Even if the objective population has an unknown or non-normal distribution, the mean of all 
possible casual samples with n sufficiently large (n>30) will have a normal distribution

 The CLT makes parametric test on sample means (or its linear combination) applicable even if 
the assumption of population normality is violated, provided that the sample size is n>30. 

Important implication of the CLT
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Source: https://corporatefinanceinstitute.com/resources/data-science/central-limit-theorem/

https://corporatefinanceinstitute.com/resources/data-science/central-limit-theorem/


DAY 2 – LECTURE OUTLINE
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• Purpose and foundations of inferential statistics
• Population and samples
• Probability and random variables & 
• Meaningful probability distributions
• Sampling distributions and Central Limit Theorem

• Getting to know the “language” of hypothesis testing
• The null and alternative hypothesis
• The probability of error? (α or “significance level")
• The p-value probability and tests interpretation
• Types of errors (Type 1 and Type 2)
• Confidence Intervals
• Effective vs statistical significance

• Hypothesis tests examples
• Comparing sample mean to a hypothesized population mean (Z test & t test)
• Comparing two independent sample means (t test)
• Comparing sample means from 3 or more samples (ANOVA)

• A closer look at testing assumptions (with examples) 
• Testing two groups that are NOT independent 
• Testing if the data are not normally distributed: non-parametric tests
• Testing samples without homogeneous variance of observations



Getting to know the “language”  
of hypothesis testing

(classical approach)
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Statistical Hypotheses

• Any claim made about one or more populations of interest constitutes 
a statistical hypothesis
• These hypotheses usually involve population parameters, the nature of the 

population, the relation between the populations, and so on

• For example, we may hypothesize that:
• The mean of a population, μ, is 2
• Two populations have the same variance
• A population is normally distributed, etc. 

• Procedures leading to either the acceptance or rejection of statistical 
hypotheses are called statistical tests
• The number obtained from the sample to estimate the population 

parameter is the point estimate  
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Hypothesis testing steps

1. State the hypotheses (the null hypothesis and an 
alternative hypothesis)

2. Formulate an analysis plan (e.g. the significance level is 
0.05, the test method one-sample z-test)

3. Analyze sample data
4. Interpret result and make decision
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What are the Null and Alternative hypotheses? 

• is the hypothesis that a sample data statistic 
occurs purely from chance
• e.g. there is no difference between the 

mean pulse rate for people doing 
physical exercise and the normal pulse 
rate

• Must contain condition of equality ,  

• Test the Null Hypothesis directly: reject  or fail 
to reject 

Null Hypothesis 

• is the hypothesis that a sample data statistic 
is influenced by some non-random cause
• e.g. the mean pulse rate for persons 

doing the physical exercise is higher 
than the normal

• Must be true if  is false (corresponding to ,  
conditions)

• `opposite' of Null Hypothesis

Alternative Hypothesis 
 or 



What is the “significance level”, α?  

There is always a certain probability of error: that  is rejected even though it 
is actually true. 

This probability of this error (Type I error) is called the significance level or α. 

• Usually, a significance level is set at 5% or 1% (the error you can tolerate). 
For example, a significance level of 0.05 signifies a 5% risk of deciding that 
an effect exists () when it does not exist (= FALSE POSITIVE).

e.g. To test the hypothesis (there is no difference between the mean 
pulse rate for people doing physical exercise and the normal pulse rate) 
1) fix the significance level at 5%
2) measurement of pulse rate conducted over n persons +/- physical 

exercise
3) calculate the t-statistics for the sample
4) calculate the p-value associated to the found t
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Lower significance levels require stronger sample evidence 
to be able to reject the null hypothesis 



What is the p-value?

• The p-value is the probability to obtain our test statistic (or a more extreme value) if 
the null hypothesis were true
• i.e. the p-value shows how strongly your sample data contradict the null hypothesis

• Conventionally, we use p-values in conjunction with α to determine whether our data 
favor the null or alternative hypothesis:
• p < 0.05 means we ‘reject the null hypothesis’ / the ‘effect is statistically significant at 5% 

level’
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Lower p-value represents stronger evidence against the null hypothesis

Distribution under H0

(one-tailed test)
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Another way to think of tests’ accuracy and precision

• Accuracy

«accurate tests» capture what you 
want them to measure in an unbiased 
way. 
• E.g.  if your lab measurement gives you 

a 3.2 kg for an object that actually 
weights 10 kg , it is NOT ACCURATE

• Precision

«precise tests» give reproducible, or 
reliable results (although not 
necessarily accurate) 
• E.g. … if you weight your object 5 times, 

and you get 3.2 kg each time, your 
measurement is VERY PRECISE

Source image: https://www.youtube.com/watch?v=1Q6_LRZwZrc&t=22249s

https://www.youtube.com/watch?v=1Q6_LRZwZrc&t=22249s


The Z-score helps to “standardize” an observation 
relative to its frequency distribution
• Z-score helps us understand where a specific observation falls within a distribution

• Consider the Z-distribution, a standardized Normal distribution with   and 

• The formula for finding z-scores is the following:   

• Where:
•  represents the data point of interest
•  and  represent the mean and standard deviation for the population from which you drew your 

sample
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EXAMPLE
Using the standard normal distribution 
N(, if a one-month-old baby girl weighs 5 
kg, how does she compare to others?

A 5 kg weight equals a   Z-score of 0.74

https://statisticsbyjim.com/glossary/population/
https://statisticsbyjim.com/glossary/sample/
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One-tailed and two-tailed tests of hypothesis
• The choice between a one-tailed and 

two-tailed test depends on our 
expectations about the reference 
population:
• one-tailed test  We know in which 

direction the estimate diverges 
compared to the population (e.g. there 
is no difference between the mean 
pulse rate for people doing physical 
exercise and the normal pulse rate)
value  | value 

• two-tailed test  We don’t know in 
which direction the estimate diverges 
compared to the population
value

Source image: https://www.cuemath.com/data/z-test/

https://www.cuemath.com/data/z-test/


Confidence intervals and estimate precision

• A confidence interval (CI) is a range of values that is likely to contain a population parameter with a 
certain level of confidence.

Confidence Interval = point estimate  +/-  margin of error

Where  = (critical value)(sd of the statistic)

• The sample mean is a point estimate of 
• Each sample mean  differs from the next one and from  only by chance
• The smaller  , the more precise will be the sample mean   
•  is a critical value that depend upon a test statistic

• The estimate precision is evaluated with the CI, which is an interval with a lower bound and an 
upper bound, which likely contains a population parameter with a certain level of confidence
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A possible application of the CLT:
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Frequentist interpretation of a confidence interval

Source image:  https://vizdata.org/slides/16/16-uncertainty-I.html#/

https://vizdata.org/slides/16/16-uncertainty-I.html#/frequentist-interpretation-of-a-confidence-interval


Example of constructing a CI for a mean point estimate

What probability level do we want? (that the interval il contain the 
population parameter). We choose 95% which implies:

• 5% probability of error = 

So, for any single sample we draw, we can calculate a range of values (CI) 
on either side of the sample mean equal to:

CI(95%)  1.96

such that: 
• in 95% of all possible samples of size  ,  will fall in our confidence 

interval 
• in 5% of all possible samples of size , 

Also, increasing  will reduce the margin of error for a fixed Z.
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Example of constructing a CI for a mean point 
estimate

Before we were assuming to know the population standard deviation 
parameter , but we rarely do.

CI(95%)  1.96

If we don’t know the population sd, we will estimate is with the sample  : 

CI(95%)  1.96

• NOTE: we can use this formula (with the  statistics) only when the 
sample size is sufficiently large. 
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Confidence Interval  example 
CI (95%) of the mean calculated from 20 random samples of n =100 genes from the human 
genome 
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Length of genes (number of nucleotides) 

19/20 CI (95%) do 
contain  1/2

0 CI does
 not 

con
tain  (5

%)



DAY 2 – LECTURE OUTLINE
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• Purpose and foundations of inferential statistics
• Population and samples
• Probability and random variables & 
• Meaningful probability distributions
• Sampling distributions and Central Limit Theorem

• Getting to know the “language” of hypothesis testing
• The null and alternative hypothesis
• The probability of error? (α or “significance level")
• The p-value probability and tests interpretation
• Types of errors (Type 1 and Type 2)
• Confidence Intervals
• Effective vs statistical significance

• Hypothesis tests examples
• Comparing sample mean to a hypothesized population mean (Z test & t test)
• Comparing two independent sample means (t test)
• Comparing sample means from 3 or more samples (ANOVA)

• A closer look at testing assumptions (with examples) 
• Testing two groups that are NOT independent 
• Testing if the data are not normally distributed: non-parametric tests
• Testing samples without homogeneous variance of observations



Comparing a sample mean to a 
hypothesized population mean

www.R4biostats.com 42

EXAMPLE A: Z-test one-sample hypothesis (for large 
samples with known population’s variance)
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Our dataset for the day 
• We will be working on a datasets described in 2 recent open access articles on cardiovascular 

heart diseases

• The original authors (Ahmad,  et al., 2017) released also the open access dataset containing the 
medical records of 299 heart failure patients collected at a Hospital in Faisalabad (Punjab, 
Pakistan), in April–December 2015
• all patients > 40 years old, having left ventricular systolic dysfunction 
• age, serum sodium, serum creatinine, gender, smoking, Blood Pressure (BP), Ejection Fraction 

(EF), anemia, platelets, Creatinine Phosphokinase (CPK) and diabetes were recorded and 
considered for potentially explaining mortality caused by Cardiovascular Heart Disease (CHD)
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QUESTION: Compare the mean platelets count in the patients’ sample 
against a reference distribution - with known mean (μ)  and standard 
deviation (σ)  

• Large population study conducted in the US 
between 2011–2016 on 17,969 adults.

• Total Platelet Count (TPC) measurement showed a 
Normal distribution with 

•  

Total Platelet Count distribution 
(in Reference general Population) 

• Sample of 299 patients  population study collected 
in Pakistan in 2015

• Total Platelet Count (TPC) measurement showed a 
Normal distribution with 

Total Platelet Count distribution 
(in Sample of heart failure patients)

Source: https://pulmonarychronicles.com/index.php/pulmonarychronicles/article/view/558/1223 (left) & author calculations (right)

https://pulmonarychronicles.com/index.php/pulmonarychronicles/article/view/558/1223
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Example A (step 1): Expressing the research question in the form of 
hypotheses

• I have a sample mean () collected measuring Total Platelet Count (TPL) for heart 
failure patients and I wonder if such population differs from the  general 
population (which I know have mean ) simply by chance (), or sampling 
variability, OR if () the sample mean is different from the population’s because of 
some specific effect related to having heart disease. 

• Stating the above hypotheses more formally:
• What is the population Total Platelet Count (TPC) mean for all people who 

suffered  of heart failure (?  
•  : there is no difference in mean TPC between patients who suffered heart failure and 

the general population  
= 236   hypothesis of no effect or (“no difference”) 

•  : there is a difference in mean TPC between patients who have suffered heart failure 
and the general population (“some effect”). This can be formalized as either:

 236 (one-sided test), or  
 236 (one-sided test), or
 236 (two-sided test) 
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Example A (step 2): Formulating an analysis plan

I start by the analysis plan, i.e. how to use sample data to evaluate 

• The evaluation often focuses around a single test statistic

• The analysis plan should specify the following elements
• Significance level (): conventionally significance levels are chosen equal to 

0.01, 0.05, or 0.10; but any value between 0 and 1 can be used.
• Test method to determine in which direction the hypothesized mean differs 

significantly from the observed sample mean. Alternative options are:
• the one-sample z-test
• the two-sample t-test
• the two-sample z-test
• etc. 

• Z-tests are closely related to t-tests, but t-tests are best performed when an 
experiment has a small sample size, less than 30. 

• Also, t-tests assume the standard deviation is unknown, while z-tests assume 
it is known. 
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Example A (step 3a): Analyze sample data: Test Statistic
• Find the value of the test statistic described in the analysis plan. Here: 

• Test statistic  Z score
• Significance level  0.05

• Given the assumptions below: 
• Patients in the HEART FAILURE were independently sampled
• Large sample with n  30 
• The level of measurement of TPL is interval-ratio
• the sampling distribution of sample means for heart failure patients is normally distributed

Test method  the one-sample z-test 
One-sample test of a mean

• Take a sample  of the size and a standard error  ; 
• Compute the z-statistic for the  population mean assuming is true. 

Where : IF n   30 and Standard Error Calculated Z score

  known  = 

  UNknown  = 



Example A (step 3b): Analyze sample data: Test Statistic
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One-sample hypothesis test of Total Platelet Count mean in a Heart Failure 
affected population
Assuming  is true:

• Heart Failure population mean would be general  population mean

• Given our random sample size  = 299, our sample mean , the general population 
standard deviation , we can  compute:

=  

 =  = 

In this case, we have: 
•a large sample (n > 100)
•and a known  
We compute the standard error and the  Z-statistic
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Example A (step 4): make a decision using the critical region
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Given that:

  (Z score corresponding to   = 0.05);

= 8.0180 actually falls in the CRITICAL 
REGION (well beyond the critical point)

DECISION: we reject the Null 
Hypothesis 

So the test indicates that indeed there 
is a difference between heart failure 
patients and the general population in 
terms of average platelets count

Sampling distribution of sample means with noted in Z scores  
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Example (step 4a): make a decision using the p-value

www.R4biostats.com

• The p-value answer the question: “What is 
the probability of the observed test 
statistic or one more extreme when H0 is 
true?” 

• This is the area under the curve of the 
Standard Normal distribution beyond the 
z.

• Convert z statistic to P-value:
• For Ha :   >    ⇒ p = P(Z > z) = area 

under right-tail beyond z
• For Ha  :   <    ⇒ p = P(Z < z) = area 

under left-tail beyond z
• For Ha :       ⇒ p = 2 × one-tailed P-

value

p-value = 0.00000000000000107443 (two-tailed)

 

DECISION: highly significant evidence against the Null Hypothesis

Interpretation:  Thus, smaller and smaller P-values provide stronger and stronger evidence against H0   



(Variation on the theme) 
Comparing a sample mean to a 
hypothesized population mean
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EXAMPLE B: t-test for small samples (n < 30) with 
unknown population’s variance)
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[Necessary digression] Student’s t-Distribution 
• In some cases we use the t-distribution instead of the normal distribution to model the 

null hypothesis because:
1. it provides a more accurate representation of the variability in sample means and 
2. it enables making reliable inferences, even in situations where the standard normal distribution fails

• In particular in cases when dealing with small sample sizes or when the population 
variance is unknown

• The shape of the t-distribution changes according to the parameter , which denotes 
degrees of freedom and is determined by the sample size (denoted by n):

  =n−1

For small n the t-distribution is a “flattened” version of 
normal

For larger n, the t-distribution and the normal 
distribution are increasingly close
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Critical value for the standard normal distribution (z) versus the 
t-distribution (t)

In the Z distribution, the area to the 
left of z = 1.6 is equal to 0.9505, 

(the probability of values falling 
below this observation is 95.05%)

Positive Z score Table
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Critical value for the standard normal distribution (z) versus the 
t-distribution (t)
• In this case, the critical values t depend on the degrees of freedom df

• The higher is n, the closer are t critical values to Z critical values

Excerpt form t Table
1-tailed 0.025 0.005

2 -taield 0.05 0.01

In the t distribution, the t  = ? 
corresponding to an area of 95% 
depends on the d.f.:
• df = 100  t = 1.984
• df = 50  t = 2.009
• df = 10  t = 2.228
• …

   z t    t
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Example B (step 1): Expressing the research question in the form of 
hypotheses

[Let's consider a situation in which the available sample is smaller (n = 23), e.g. there are 
records only for patients who had a follow-up visit in 21days or less.]

• GOAL: make inference on a “hypothetical” population of patients who suffered 
heart failure & who have had a follow-up visit within 21 days   

• QUESTION: the sample mean () of Total Platelet Count (TPC) for heart failure 
patients differs from the expected mean of a general population () simply by 
chance () OR () the sample mean is different from the population’s because of 
some specific effect of having heart failure. 

• MORE FORMALLY:
•  : there is no difference in mean TPC between patients who suffered heart failure 

(visited in 21 days) and the mean TPC the general population  
= 236   hypothesis of no effect or (“no difference”) 

•  : there is a difference in mean TPC between patients who have suffered heart 
failure and the general population (“some effect”). This can be formalized as:

 236 (two-sided test) 
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Example B (step 2): Analyze sample data: Test Statistic
• Find the value of the test statistic described in the analysis plan. Here: 

• Test statistic  Z-score
• Significance level  0.05

• Given the assumptions below: 
• Patients in the HEART FAILURE with follow-up visit in 21 days or less were independently sampled
• “Small” sample with n 30
• The level of measurement of TPL is interval-ratio
• The sampling distribution of sampling means for heart failure patients is normally distributed

Test method  the one-sample t-test 

One-sample test of a mean
• Take a sample  of the size and a standard error   (let’s pretend we don’t know the general 

population variance 
• Compute the t-statistic for the  population mean assuming is true. 

Where : IF n  30 and Standard Error Calculated Z score

  known  = 

  UNknown  = 



Example B (step 3): Analyze sample data: Test Statistic
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One-sample hypothesis test of Total Platelet Count mean in a Heart Failure affected 
population (<30 d)

Assuming  is true:

• Heart Failure population mean  would be general  population mean

• Our random sample has size  = 23, sample mean , and standard deviation . 

• So we compute: =  

   = 

In this case, we have: 
• a small sample (n <  30)
• and an unknown 
Hence, we compute the standard error  and the  t-statistic
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Example B (step 4a): make a decision using the critical region
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In a two-tailed test with  = 0.05 and d.f.  = 
23-1 = 22

the  (t score corresponding to   = 0.05); 

Hence,  actually falls in the ACCEPTANCE 
REGION  

DECISION: Since the t statistic is less  than 
the t critical value of   on 22 degrees of 
freedom at 95% level (P=0.05): we FAIL to 
reject the Null Hypothesis

Sampling distribution of sample means with 
noted in t scores  

da rifare
il 
grafico  
pure 
sbagliato



59

Example B (step 4b): make a decision using the p-value

www.R4biostats.com

DECISION: Since the obtained p-value is (much) higher than our significance level α = 0.05, we FAIL to 
reject the null hypothesis. We have insufficient evidence proving the difference between the general 
population mean TPC and mean TPC of HF patients visited within 21 days is statistically significant.

p-value = 0.48 (two-tailed)

 
• The p-value responds to the question: 

“What is the probability of the observed 
test statistic or one more extreme when 
H0 is true?” 

• This is the area under the curve of the t 
distribution beyond the .

• Convert t statistic to P-value:
• For Ha : >    ⇒ p = P( > ) = area 

under right-tail beyond z
• For Ha  :  <    ⇒ p = P( < ) = area 

under left-tail beyond z
• For Ha :       ⇒ p = 2 × one-tailed P-

value
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One sample
z-test

Two sample 
independent

z-test

One sample
t-test

Two sample
independent

t-test

Two sample paired
z-test

Two sample
paired
t-test

To recap: z test or t test? 

Is/are the 
sample size(s) 

yes

no

How many 
samples do 
you have?

How many 
samples do 
you have?

Do you know the 
populations 

variance?

ye
s

no

Are the 2 
samples 

independent?

Are the 2 
samples 

independent?

yes

no

yes

no

1

2

1

2



Comparing 2 sample means  
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EXAMPLE C: two samples independent t-test  
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What changes in two-sample tests type of problems?

Source image: https://datatab.net/tutorial/one-sample-t-test

1 sample 2 samples

Independent samples: e.g. 
patients receiving treatment v. 
those receiving placebo drug

Dependent samples: e.g. same 
patients visited twice: before 
and after surgery

https://datatab.net/tutorial/one-sample-t-test
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Example C (step 1): the research question and the 
test hypotheses

• GOAL: verify if there is a difference between means  and  
• where: died = 1 and alive = 0

• QUESTION: Is there a statistically significant difference between the mean 
values of two groups? 

• MORE FORMALLY:
•  :  =    The two population means are equal
•  :  There is a mean difference between the two groups in the population. Possible 

directional difference formulation (two-tailed, left-tailed, right-tailed) :  
• :    (the two population means are not equal)
•  :    (population 1 mean is less than population 0 mean)
•  :    (population 1 mean is greater than population 0 mean)

[This time, I wonder if there a statistically significant difference between the Total 
Platelet Count in the patients who died and the patients who survived heart failure.]
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Example C (step 2): analyze sample data, test 
statistic

• ANALYSIS PLAN decisions:
• Data  there is a categorical variable defining 2 groups (DEATH_EVENT = 1 or 0) 
• Test statistic  two samples’ means comparison
• Significance level  0.05
• Direction of equality  two-tailed (I don’t have an expectation)
• Test method  ??

• Verify the ASSUMPTIONS for independent (unpaired) t-test: 
1. The 2 samples ( “died” and “survived”) must be independent*: i.e. a value in one sample must 

not influence a value in the other sample ✅
2. The dependent variable is scaled in intervals (Total Platelets Count in ) ✅
3. The dependent variable is normally distributed (Total Platelets Count in ) ✅

• If the variables are not normally distributed, the Mann-Whitney U test can be used.

4. The variance within the two groups should be similar (F-test or Levene’s test, …) ✅
• If the variances are not equal you should instead perform Welch’s t-test (the R default)

• Test method  two sample independent t-test 
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Example C (step 3): collect data about the two samples

• Sample 1 (DEATH_EVENT = 1) 
• size  = 96
• mean TPC  = 256
• standard deviation  = 9

• Sample 2 (DEATH_EVENT = 0)
• size  = 203
• mean TPC   = 267
• standard deviation  = 97.5 

• Also the last assumption (equal 
variances) is verified by the F test of 
variance equality

• with  and 

• and :  =   

F test statistic df1 df2 p  Interpretation
H0 is “equal variances” 
p-value = 0.89  > 0.05  FAIL to reject H0 

Equal variances  between groups ✅

1.0205 95 202 0.8915



www.R4biostats.com 66

Example C (step 4):  compute the test statistic for t-Test for independent samples

• Since we verified the required assumptions, the test method is the independent (two-sample) t-test 

• The test statistic is computed with this equation, given:
• the population standard deviation(s) are unknown, but we can assume = variances in 2 groups  
• large sample ( +   > 100)
•  obtained as pooled estimate standard deviation of the sampling distribution of the difference

    (corrected bias)  or 

where: 
•  and  are the sample sizes, 
•  and  are the sample means, 
•  and  are the sample variances
• df =2  are the  degrees of freedom 

Results: 
 = -10.28      = [-34.23, +13.66 ]
  
p-value 0.3989



Example C (step 5): Interpret the results 
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RECAP: 

An independent samples t-test was conducted to compare mean counts of platelets in 
patients with heart failure who died and patients with heart failure who survived.   

RESULTS INTERPRETATION: 

To make a statement about the results of the test (whether the  of equal populations 
means holds or not) one of the following two values is used:

• p-value (2-tailed)
• The p-value 0.3989 correspondent to the test statistic   with 2  degrees of freedom  is 

MORE than our chosen significance level (0.05), so we CAN NOT reject the null hypothesis.

• lower and upper confidence interval of the difference
• The magnitude of the differences in the means  = -10.28  falls inside the lower and upper 

bounds of the Confidence Interval   = [-34.23, +13.66 ]  consistent with the null hypothesis. 

DECISION: 

We do not have sufficient evidence to say that the mean counts of platelets in between 
these two populations is different.
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Other similar cases we cannot review… 

• one-sample Tests on proportions?
• two-sample Tests on proportions?
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Comparing sample means from 
3 or more samples 

 EXAMPLE D: using ANOVA test
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Extending comparison to 3 or more groups… 
• ANOVA (“Analysis Of Variance”) is an extension of the previous hypothesis testing ideas, but 

examined how means of a variable differ across three or more groups

• For this purpose, the means and variances of the respective groups are compared with each 
other. 

• While the t-test serves with a categorical explanatory variable that has two levels, (one-way) 
ANOVA looks at quantitative outcomes and a single categorical explanatory variable with any 
number of levels

• There are different types of ANOVA. The most used are:
• ‘one- way’ ANOVA (or one-factor ANOVA) if there is only one explanatory variable (“treatment”) 

with two or more levels, and only one level of treatment is applied for a given subject  (e.g. 
ethnicity)

• ‘two-way’ ANOVA (or two-factor ANOVA), if the levels of two different explanatory variables are 
being assigned, and each subject is mapped to one level of each factor (e.g. ethnicity + 
treatment type)

• Another distinction refers to the selection of groups:
• with repetition (as in the case  the same person interviewed at several points in time)
• without repetition (independent groups)

Example: an oncologist may be interested in knowing whether patients with different 
types of cancer have the same average survival times (‘one-way’ ANOVA) under several 
different competing cancer treatments (‘two-way’ ANOVA) .
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Formalizing One-Way ANOVA (“Analysis Of Variance”) 
• The dependent variable is on a metric scale. In the case of the analysis of variance, the 

independent variable (factor) has at least three levels. 
• Assumptions for the results of a one-way ANOVA to be valid:

1. Independence of observations – The observations in each group are independent of each 
other and the observations within groups were obtained by a random sample.

2. Normally-distributed response variable – The values of the dependent variable follow a 
normal distribution. 

3. Homogeneity of variance – The variances of the populations that the samples come from are 
equal. 

• Key concept with ANOVA: “within” and “between” variations in the dependent variable values
• Total Variation = Within Variation + Between Variation

Source image: https://datatab.net/tutorial/anova

• Case A (small 
variance within 
the groups, large 
between the 
groups)

• Case B (large 
variance within 
the groups, small 
between the 
groups)  

A B

https://datatab.net/tutorial/anova
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• MOTIVATION: In general, suppose there are K normal populations with possibly different means, 
(μ1, μ2, …, μK), but all with the same variance σ2. To perform the test, K independent random 
samples are taken from the populations to obtain K sample means.

• QUESTION: Is there a statistically significant difference between the mean values of the k 
populations? 

• MORE FORMALLY:
•  :  =  = … =   all K population means are equal
•  : not all K population means are equal    

• To calculate the variation we use the “sum of squares”, like so:
•   “sum of squares BETWEEN groups”, with df1=k−1 
•   “sum of squares WITHIN groups”, with df2=N−k

•   “TOTAL sum of squares”, where df2=N−1

• where,  = mean of each category,  = the “grand mean” of the sample, N = total number of 
observation,   = number of observations in each group

ANOVA: Research application  
Population Sample Size Sample Mean Sample Variance
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Test statistic for ANOVA (“Analysis Of Variance”) 
• For ANOVA, the test distribution we use is the F-distribution

• The F test (like the t test) requires the degrees of freedom input 

• The test is right-tailed: H0 is rejected at level of significance α if  ≥ 
• With: 

  with df1=K−1 and df2=N−K

F-Distribution examples

Each F-distribution is 
specified by 2 degrees of 
freedom parameters 
denoted:

•  df1 (numerator d.f.)
• df2 (denominator d.f.)
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Example D (problem): research question and test 
hypotheses
• DATA: A research laboratory developed two treatments aimed at prolonging the survival 

times of patients with an acute form of thymic leukemia. To evaluate the potential 
treatment effects 33 laboratory mice with thymic leukemia were randomly divided into 3 
groups. 
• The 1st group received Treatment 1, the 2nd group received Treatment 2, and the 3rd 

group was observed as a control group (survival times of these mice are given below) 

• RESEARCH QUESTION: Is there sufficient evidence to confirm the belief that at least one of 
the two treatments affects the average survival time of mice with thymic leukemia? 

Source example data: https://saylordotorg.github.io/text_introductory-statistics/s15-04-f-tests-in-one-way-anova.html

Mice survival times in days by group

Treatment 1 Treatment 2 Control
71 75 77 81
72 73 67 79
75 72 79 73
80 65 78 71
60 63 81 75
65 69 72 84
63 64 71 77
78 84 67
71 91

https://saylordotorg.github.io/text_introductory-statistics/s15-04-f-tests-in-one-way-anova.html
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Example D (step 1): analysis plan and hypotheses  
• GOAL: Test, at the 1% level of significance, whether the differences between the samples are large enough 

to reject the null hypotheses and justify the conclusion that the populations represented by the samples 
are different  

• Verify the ASSUMPTIONS for One-way ANOVA
1. Independence of observations  ✅ (assignment to groups was done randomly)  
2. Normally-distributed response variable  ✅   
3. Homogeneity of variance   ✅

• (more on this in the practice session)

• ANALYSIS PLAN decisions:
• Data  there is a categorical variable defining 3 groups  
• Test statistic  F distribution
• Significance level  0.01
• Direction of equality  The test is right-tailed:  is rejected at level of significance α if  ≥ 

• HYPOTHESES formalization:
•  :  =  =  all K population means are equal
•  : at least one population mean is different from the rest

  with df1=K−1 and df2=N−K
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Example D (step 2): compute the test statistic for H0 (i.e. K Population Means Are 
Equal)

• Experiment set up: 
• 𝑛 = 33, K = 3, so that degrees of freedom df1=K−1 = 2 and df2=n−K = 30

• with these samples’ statistics:

• The overall sample mean (all 33 observations) is  = 73.42

• We compute Means Square Between and Means Square Within:

 =  =   = 217.31 

 =  =   =  38.45

• so that:

 

Groups Sample Size Sample Mean Sample Variance
 = 16  = 69.75

 = 9 = 77.78

 = 8



Example D (step 3): interpret the results 
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• The obtained test statistic is:

 

• The test is right-tailed. The single critical value is 5.39, thus the rejection region is [5.39, ∞)

 

DECISION: Since = 5.65 > 5.39, we reject H0. 

The data provide sufficient evidence, at the 1% level of significance, to conclude that a treatment 
effect exists at least for one of the two treatments in increasing the mean survival time of mice with 
thymic leukemia.

NOTE: ANOVA does NOT specify which population means are different. To determine this, you need 
to perform post hoc tests, also known as “multiple comparisons” tests.
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Other types of ANOVA…
• Depending on:

• how many explanatory variables (“categories”) we consider  
• if samples are assigned with measurement repetition (within-subjects factor) or without 

measurement repetition (between-subjects factor)

Source image: https://datatab.net/tutorial/two-factorial-anova-with-repeated-measures

https://datatab.net/tutorial/two-factorial-anova-with-repeated-measures
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Two-way, repeated measures ANOVA 
• A repeated measures ANOVA is used to compare mean scores across multiple observations of 

the same subjects (dependency). It is typically used in two specific situations:
• Measuring the mean scores of subjects during three or more time points
• Measuring the mean scores of subjects under three or more different conditions.

• Two-factor ANOVA allows to decompose the total dispersion of the data into four components:
1. the share attributable to the 1st factor
2. the share attributable to the 2nd  factor
3. the share attributable to the interaction between 1st factor  and 2nd  factor
4. the unexplained, or residual portion

Source image: https://datatab.net/tutorial/two-factorial-anova-with-repeated-measures

EXAMPLE two-factorial ANOVA with 
repeated measures

Taking samples of people with high 
blood pressure  for each treatment 
(1st factor = treatment) & repeat  
their blood pressure measurement 
over 3 points in time:  before, during 
and after the treatment  (2nd factor 
= time)

Time

https://datatab.net/tutorial/two-factorial-anova-with-repeated-measures
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Repeated measures ANOVA: applications

• In real life there are two benefits of using the same subjects across multiple 
treatment conditions:

1. It’s cheaper and faster for researchers to recruit and pay a smaller number of 
people to carry out an experiment since they can just obtain data from the same 
people multiple times

2. We are able to attribute some of the variance in the data to the subjects 
themselves, which makes it easier to obtain a smaller p-value («control of 
confounders»)

• One potential drawback of experimental design is that subjects might get bored 
or tired if an experiment lasts too long («attrition»), which could skew the 
results. 



DAY 2 – LECTURE OUTLINE
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• Purpose and foundations of inferential statistics
• Population and samples
• Probability and random variables & 
• Meaningful probability distributions
• Sampling distributions and Central Limit Theorem

• Getting to know the “language” of hypothesis testing
• The null and alternative hypothesis
• The probability of error? (α or “significance level")
• The p-value probability and tests interpretation
• Types of errors (Type 1 and Type 2)
• Confidence Intervals
• Effective vs statistical significance

• Hypothesis tests examples
• Comparing sample mean to a hypothesized population mean (Z test & t test)
• Comparing two independent sample means (t test)
• Comparing sample means from 3 or more samples (ANOVA)

• A closer look at testing assumptions (with examples) 
• Testing two groups that are NOT independent 
• Testing if the data are not normally distributed: non-parametric tests
• Testing samples without homogeneous variance of observations



What if tests assumptions do 
not hold?
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What if the assumptions did not hold?
Revisit the ASSUMPTIONS we verified for independent (unpaired) t-test: 

1. The response variable must be expressed through an interval and ratio scale 
(quantitative variable → continuous scale)

2. What if the 2 groups/samples are NOT independent (e.g. taken via before & after 
surveys)?
• We use the  dependent sample t-test (or paired t-test)

  with df=n−1

3. What if dependent variable is NOT normally distributed?
• The normality assumption is more important for small sample sizes than for larger sample sizes 

(but if it is hard to verify, we rely on our domain knowledge)* we use  (nonparametric tests that 
doesn’t assume normality)
• For INDEPENDENT SAMPLES we can perform Mann-Whitney U test (or Wilcoxon rank-sum test as in 

R) -- best for continuous variables
• For PAIRED SAMPLES we can perform  Wilcoxon signed-rank test  -- OK with ordinal variables

4. What if variance within the two groups is NOT similar?  (F-test, Levene’s test,…) 
• We can perform Welch’s t-test (the R default) 

[We will learn the R code in the PRACTICE SESSION]
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UNMET ASSUMPTION II)
The two groups are not independent: paired 

t-tests

EXAMPLE E: two (paired) small samples 
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Example E (step 2): Question: Is the difference 
between two PAIRED samples statistically significant?

• Given the assumptions:
• outcome variable is interval scaled ✅
• the differences of the paired values are 

normally distributed ✅
• independence  ❌

• (observations are paired by design)

• We use the dependent t-Test for 
paired samples, with the following 
hypotheses:
•  : the mean grades before and after the 

workshop are equal
•  : the mean grades before and after the 

workshop are different

[This time, Let's imagine a statistics test is administered to the same group of 12 
students before & after attending a workshop 😉]

Distribution of the difference (normal)
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Example E (step 3): Interpret the results 

• The paired dependent t-Test  (to evaluate : basically is executed on the mean of 
the paired differences . The test statistic  is: 

• with standard error of the mean  

• In this case (two-sided , n = 12, and df = 11, ),  we obtain t = -1.88, with p-value = 
0.087.

• Since p-value > 0.05 , this results suggests that there is no statistically significant 
difference between the before and after means.

• Therefore, at the 5% significance level,  we do not reject the null hypothesis  that 
the grades are similar before and after the workshop .😭

t df p
before - after -1.88 11 .087
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UNMET ASSUMPTION III)
If the data are not normally distributed: non-

parametric tests

EXAMPLE F: using Wilcoxon Rank Sum Test



Example F (step 1): Compare two independent sample 
when the data are not normally distributed  

[Let’s go back to the HEART FAILURE dataset but looking at the levels of Creatinine Phosphokinase (CPK) 
in the blood, an enzyme that might indicate a heart failure or injury] 

• GOAL: verify if the difference in CPK levels in the blood of the survivors versus those 
who died after heart failure is statistically significant or only due to sampling error.  

• From the sample I get: 
• the general sample mean (with )
•  sample mean for group of survived patients (with )
•  sample mean for group of dead patients (with )

• MORE FORMALLY: I want to run a test to verify whether my sample’ statistics represent 
an actual difference in the respective hypothetical populations () or if there is no 
difference between the two hypothetical populations () 
•  : there is no difference in mean CPK between patients who suffered heart failure  and died  

versus patients who survived after heart failure
 =    hypothesis of no effect or (“no difference”) 

•  : there is a difference in mean CPK between patients who suffered heart failure  and died  
versus patients who survived after heart failure (“some effect”).  

 (two-sided test) or 
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Example F (preliminary check): visually check the 
“normality” assumption for parametric testing
We can graphically confirm that CPK is not normally distributed by using:

1. the density plot, in which we can see the distribution is not bell shaped 
2. the QQ plot (or Quantile-Quantile plot) for large samples –  data points should roughly fall along a 

straight diagonal line when the dataset follows a normal distribution.
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Example F (preliminary check): confirming a “normality” 
assumption violation with tests  

• We can confirm that CPK is not normally distributed by using tests for normality:
1. Shapiro-Wilk test  
2. Kolmogorov-Smirnov test

• The null hypotheses are defined as:   
• H0: CPK distribution is normal
• H1: CPK distribution is not normal

•  The test has been run over each group:
• Evidently, we reject the H0 ! 
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Shapiro-Wilk Normality Test results

variable DEATH EVENT statistic p

creatinine 
phosphokinase

survived 0.6277141 0.000000000000000000008509006

died 0.4392427 0.000000000000000019922527779
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Example F (step 2): compare independent samples 
using a non parametric test 
• Since we verified that the explained variable (CPK) is NOT normally distributed we will 

run a Wilcoxon Rank Sum test (equivalent to the Mann-Whitney U  test) to compare two 
independent samples
• It is considered to be the nonparametric equivalent to the two-sample independent t-test

• ASSUMPTIONS :
• Ordinal or Continuous  dependent variable: the variable you’re analyzing, e.g. CPK levels ✅
• Independence: All of the observations from both groups are independent of each other ✅
• Shape: The shapes of the distributions for the two groups are roughly the same ✅

Wilcoxon Rank Sum Test (two-sided alternative)  

DATA creatinine_phosphokinase by DEATH_EVENT_f

Statistic W = 9460

p-value = 0.684

RESULTS: since the test statistic is W = 9460 and the corresponding p-value is 0.684 > 0.05, we fail to 
reject the null hypothesis.

We do not have sufficient evidence to say that CPK levels for dead patients is less than that of 
survived patients ( )
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UNMET ASSUMPTION IV)
The variances of the two groups are not 

homogeneous

EXAMPLE G: using t test with the Welch 
correction
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Example G (step 1): Compare two independent sample 
when the variance is not homogeneous  

[Once again we use HEART FAILURE dataset but look at the levels of Serum sodium in the blood, a mineral 
that serves for the correct functioning of muscles and nerves] 

•GOAL: verify if the difference in Serum sodium levels in the blood of the survivors versus those who died 
after heart failure is statistically significant or only due to sampling error.  
•From the sample I get: 
•  milliequivalents per liter (mEq/L) the general sample mean (with )
•sample mean for group of survived patients (with )
• sample mean for group of dead patients (with )

•MORE FORMALLY: I want to run a test to verify whether my sample’ statistics represent an actual difference 
in the respective hypothetical populations () or if there is no difference between the two hypothetical 
populations () 
• : there is no difference in mean serum sodium between patients who suffered heart failure  and died  versus 
patients who survived after heart failure

 =    hypothesis of no effect or (“no difference”) 

• : there is a difference in mean serum sodium between patients who suffered heart failure  and died  versus 
patients who survived after heart failure (“some effect”).  
 (two-sided test) or 
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Example G (preliminary check): visually check the 
“HOV” assumption for parametric testing
• Once again, plotting the data offers a graphical intuition that the variance of 

observations in the two groups seem not homogenous
• recall that  



Example G (preliminary check): confirming a “HOV” 
assumption violation with tests  

• It is always best to use an actual test to confirm this intuition. So in this case we can use 
the Fisher's F test to verify equal variances of Serum Sodium concentration in the two 
groups  

• The null hypotheses are defined as:   
• H0:    (The true ratio of variances is equal to 1)
• H1:    (The true ratio of variances  not equal to 1)

• I use the P-value as a decision rule, which leads me to reject the null 
hypothesis since it is lower than 0.05 conventional alpha level  
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F test to compare two variances

variable groups statistic p-value

Serum Sodium 
survived F = 1.5769, 

num df = 95, 
denom df = 202

p-value = 0.007646
died



Example G (step 2): compare independent samples 
using a specification of the t test 
• Since we verified that the explained variable (Serum Sodium in the blood) is NOT 

homogeneous in variance, we will run a t test with the Welch correction  to 
compare two independent samples
• Unequal variance is compensated by lowering the degrees of freedom
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Welch Two Sample t-test

DATA serum_sodium by DEATH_EVENT_f

Statistic t = -3.1645 
df = 154.01

p-value = 0.001872

RESULTS: since the test statistic is t = -3.1645  (with df = 154.01) and the corresponding p-value is 
0.001872 < 0.05, we reject the null hypothesis.

We therefore have sufficient evidence to say that the level of serum sodium levels for dead 
patients is significantly different than that of survived patients 
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