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WORKSHOP SCHEDULE

 4 days
• 1. Intro to R and data analysis
• 2. Statistical inference & hypothesis testing
• 3. Modeling correlation and regression
• 4. Machine Learning; MetaboAnalyst; Power Analysis

 Each day will include:
• Frontal class (MORNING)
• Practical training with R about the topics discussed in the morning. 

(AFTERNOON)

2



www.R4biostats.com 3

DAY 4 – LECTURE OUTLINE

• Examples of Machine Learning
• PCA
• PLS-DA

 MetaboAnalyst
• Overview
• Workflow

 Power analysis
• Hypothesis testing
• Decision errors
• Statistical power
• Effect size



Principal Component Analysis 
(PCA)

A type of unsupervised learning algorithm for 
dimensionality reduction
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Purpose of PCA

The goal of PCA is to transform a high-dimensional dataset into a 
lower-dimensional dataset while retaining as much of the variance 
in the data as possible.

Common use cases of PCA:
1. to reduce the dimensionality of high-dimensional datasets
2. to visualize the structure of the data
3. to remove noise and redundant information from the data
4. as a preprocessing step for other machine learning algorithms
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Covariance

Variance  measures how the values vary in a variable. 
Covariance measures how changes in one variable are 
associated with changes in a second variable.
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Covariance

Positive, negative and zero covariance.

Different variances and zero covariance.
Source: https://builtin.com/data-science/covariance-matrix
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PCA
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PCA originally is a linear algebra operation. 

It is a transformation method that creates (weighted linear) combinations 

of the original variables in a data set, with the intent that the new 

combinations will capture as much variance in the dataset as possible 

while eliminating correlations (i.e., redundancy).

PCA creates the new variables using the eigenvectors and eigenvalues 

calculated from the covariance matrix of your original variables.

https://en.wikipedia.org/wiki/Linear_algebra
https://en.wikipedia.org/wiki/Linear_combination
https://en.wikipedia.org/wiki/Variance
https://en.wikipedia.org/wiki/Covariance_matrix
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Eigenvectors & Eigenvalues

In the context of PCA
• The eigenvectors of the covariance matrix define the directions of the 

principal components calculated by PCA. 

• The eigenvalues associated with the eigenvectors describe the variance 
along the new axis.

Source: https://towardsdatascience.com/tidying-up-with-pca-an-introduction-to-principal-components-analysis-f876599af383
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Principal components

Principal Component 1 accounts for variance from both variables A and B. (dimension reduction)

The principal components (eigenvectors) are sorted by descending eigenvalue. 
The principal components with the highest eigenvalues are “picked first” as 
principal components because they account for the most variance in the data.

Source: https://towardsdatascience.com/tidying-up-with-pca-an-introduction-to-principal-components-analysis-f876599af383
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Principal components

To convert our original points, we create a projection matrix. 
This projection matrix is just the selected eigenvectors concatenated to a matrix. 
We can then multiply the matrix of our original observations and variables by our 
projection matrix. 
The output of this process is a transformed data set, projected into our new data 
space — made up of our principal components!

Source: https://towardsdatascience.com/tidying-up-with-pca-an-introduction-to-principal-components-analysis-f876599af383

https://towardsdatascience.com/tidying-up-with-pca-an-introduction-to-principal-components-analysis-f876599af383


www.R4biostats.com

PLS Discriminant Analysis
(PLS-DA)

A supervised alternative to PCA
performing simultaneous dimensionality 

reduction and classification
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Purpose: PLS-DA vs PCA

 PCA is completely unsupervised (i.e. you don’t know in advance if there are 

classes in your dataset) 

 In PLS-DA you know how your dataset is divided in classes from the 

response vector Y. The goal here is then to project the predictors into a 

space, while maximizing the 

 Common scenarios for using PLS-DA: omics sciences.
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Scores plot: PCA vs PLS-DA
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PCA PLS-DA

Samples projected in the space of 
Principal Components

Samples projected in the space of latent 
variables (components) that maximize 
the separation between groups

Source: Test data (NMR spectral bins) provided by METABOANALYST platform: https://www.metaboanalyst.ca

https://api2.xialab.ca/api/download/metaboanalyst/nmr_bins.csv
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Loadings plot: PCA vs PLS-DA
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The loading vectors (here shown as 
points) represent the original 
variables in the space of latent 
components retrieved by PLS-DA.

PCA PLS-DA

The loading vectors (here shown as 
points) represent the original 
variables in the space PCs.

Source: Test data (NMR spectral bins) provided by METABOANALYST platform: https://www.metaboanalyst.ca

https://api2.xialab.ca/api/download/metaboanalyst/nmr_bins.csv
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Feature Importance in PLS-DA
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VIP (Variable Importance in 
Projection) scores, ranking the 
variables based on their significance 
in the PLS-DA model of classification.

…very useful to select potential 
biomarkers!

Source: Test data (NMR spectral bins) provided by METABOANALYST platform: 
https://www.metaboanalyst.ca

https://api2.xialab.ca/api/download/metaboanalyst/nmr_bins.csv
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Cross validation in PLS-DA
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PLS-DA generate a model of 
classification.

By partitioning the dataset and 
iteratively testing the model, cross 
validation estimate the predictive 
ability of the model.

Q^2 is an analogous of R^2 in 
regression: the higher the better!

Source: Test data (NMR spectral bins) provided by METABOANALYST platform: 
https://www.metaboanalyst.ca

https://api2.xialab.ca/api/download/metaboanalyst/nmr_bins.csv
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Permutation in PLS-DA

18

Permutation testing is a non-
parametric approach to assess 
the significance of a model’s 
results. 

In the context of PLS-DA, this 
test helps verify whether the 
observed classification accuracy 
is better than what would be 
expected by chance. 

Test data (NMR spectral bins) provided by METABOANALYST platform: https://www.metaboanalyst.ca

https://api2.xialab.ca/api/download/metaboanalyst/nmr_bins.csv
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DAY 4 – LECTURE OUTLINE

• Examples of Machine Learning
1. PCA
2. PLS-DA

 MetaboAnalyst
1. Overview
2. Workflow

 Power analysis
1. Hypothesis testing
2. Decision errors
3. Statistical power
4. Effect size
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MetaboAnalyst

An R-driven Software

20
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Introduction to MetaboAnalyst

 it is a free web-based platform
 it works with R but it has a friendlier GUI: anyone can make 

metabolomics data analysis, interpretation and integration with other 
omics data 

 the whole metabolomics community uses it!!!

…but

you need a statistical background to interpret the MetaboAnalyst 
outputs and to get the most of it!

https://www.metaboanalyst.ca  
From raw spectra to biomarkers, patterns, functions and systems biology

https://www.metaboanalyst.ca/
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MetaboAnalyst overview

Source: Xia, J., Wishart, D. Nat Protoc 6, 743–760 (2011). 
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MetaboAnalyst workflow
1) data upload

Test data 1:
Binned 1H NMR spectra of 50 urine 
samples using 0.04 ppm constant 
width (Psihogios NG, et al.) 
Group 1- control; 
Group 2 - severe kidney disease.

http://www.ncbi.nlm.nih.gov/pubmed/17705523
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MetaboAnalyst workflow
2) data filtering
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MetaboAnalyst workflow
3) data normalization
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Effect of normalization over 
sample

MetaboAnalyst workflow
3) data normalization
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Effect of features/metabolites 
scaling 

MetaboAnalyst workflow
3) data normalization
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«Classical» analysis of 
variance among groups

Machine learning algorithms

MetaboAnalyst workflow
4) statistical analysis
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MetaboAnalyst workflow
4) univariate analysis
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MetaboAnalyst workflow
4) univariate analysis
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MetaboAnalyst workflow
5) chemometric analysis
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MetaboAnalyst workflow
5) chemometric analysis
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MetaboAnalyst workflow
5) chemometric analysis



www.R4biostats.com 34

MetaboAnalyst workflow
5) chemometric analysis

Heatmap of the top 25 T-test features
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Identifying the metabolic pathways deregulated by a pathology 
is finding a target for pharmacological therapy!

Source: https://www.behance.net/gallery/38270165/Metro-Map-of-Metabolism-The-Overview

https://www.behance.net/gallery/38270165/Metro-Map-of-Metabolism-The-Overview
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MetaboAnalyst workflow
6) enrichment analysis

Test data 2:
Urinary metabolite 
concentrations from 77 
cancer patients measured 
by 1H NMR. 
Phenotype: 
N - cancer cachexic; 
Y - control
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MetaboAnalyst workflow
6) enrichment analysis
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MetaboAnalyst workflow
6) enrichment analysis

Enrichment analysis, based on the 
globaltest, tests associations between 
metabolite sets and the outcome. 
The algorithm uses a generalized linear 
model to compute a ‘Q-stat’ for each 
metabolite set. 

https://doi.org/10.1093/bioinformatics/btg382
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MetaboAnalyst workflow
6) enrichment analysis
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MetaboAnalyst workflow
6) functional interpretation
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MetaboAnalyst workflow

Source: Xia, J., Wishart, D. Nat Protoc 6, 743–760 (2011). 

    Metabolic pathway analysis and visualization
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DAY 4 – LECTURE OUTLINE

• Examples of Machine Learning
1. PCA
2. PLS-DA

 MetaboAnalyst
1. Overview
2. Workflow

 Power analysis
1. Hypothesis testing
2. Decision errors
3. Statistical power
4. Effect size
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Hypothesis testing steps

1. State the hypotheses (the null hypothesis and an alternative 
hypothesis)

2. Design the analysis (e.g. the significance level is 0.05, the test 
method one-sample z-test)

3. Analyze sample data

4. Interpret result and make decision
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What are the Null and Alternative hypotheses? 

• is the hypothesis that a sample data statistic 
occurs purely from chance
• e.g. there is no difference between the 

mean pulse rate for people doing 
physical exercise and the normal pulse 
rate

• Must contain condition of equality ,  

• Test the Null Hypothesis directly: reject  or fail 
to reject 

Null Hypothesis 

• is the hypothesis that a sample data statistic 
is influenced by some non-random cause
• e.g. the mean pulse rate for persons 

doing the physical exercise is higher 
than the normal

• Must be true if  is false (corresponding to ,  
conditions)

• `opposite' of Null Hypothesis

Alternative Hypothesis 
 or 
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Decision Errors

Two types of errors can result from a hypothesis test. 
 Type I error occurs when the researcher rejects a null hypothesis 

when it is true. The probability of committing a Type I error is called 
the significance level. This probability is also called alpha, and is 
often denoted by α. 

 Type II error occurs when the researcher fails to reject a null 
hypothesis that is false. The probability of committing a Type II error 
is called Beta, and is often denoted by β. The probability of not 
committing a Type II error is called the Power of the test. 
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Summarizing Type I and Type II Errors

α = P(H1|H0) 
β = P(H0|H1)

Fail to reject  H0 Reject H0 

H0  is true
 Correct action Type I error

FALSE POSITIVE 

probability 1-a a

H1 is true Type II error
FALSE NEGATIVE Correct action 

probability b power = 1-b
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Which is worse: false-positive or false-
negative?

Fail to reject  H0 Reject H0 

H0 is true TRUE NEGATIVE FALSE POSITIVE 

probability 1-a a

H1 is true FALSE NEGATIVE TRUE POSITIVE

probability b power = 1-b

Example 1. Covid-19 test:

• False-POSITIVE: The test confirm the infection 
although you do not have the virus. You have to 
quarantine yourself, even though you are OK.

• False-NEGATIVE: The test did not detect the 
presence of the virus in your body, although you do 
have the virus. You become a walking distribution 
centre for the virus!!

Example 2. Quality control in a pharma production 
company

• False-POSITIVE: The test declared a product faulty. 
We throw away a product that should be on the 
shelves.

• False-NEGATIVE: The test declared a faulty product 
as a faultless product. The risks are very high: a 
defective pharmaceutical product can even harm 
the end user (the patient).

Example 3. Disease diagnosis

• False-POSITIVE: a patient receives a faulty diagnosis 
of disease and then later realizes that the diagnosis 
was wrong, maybe after more tests.

• False-NEGATIVE: someone who has a disease is not 
provided proper medical treatment, which could be 
fatal.

Example 3. Criminal court

• False-POSITIVE: an innocent citizen is found guilty 
and is sent to prison or receives the death penalty

• False-NEGATIVE: a criminal is declared innocent 
and escapes punishment
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Controlling Type I and Type II Errors

 α, β, and n are related
 when two of the three are chosen, the third is determined
 usually the researcher fix the type I error (a) he can tolerate 

before experiment and then compare the p-value and takes a 
decision



www.R4biostats.com 49

Controlling Type I and Type II error

Figure 1: Equal costs for false positives 
and false negatives. 

Figure 2: Greater cost for false positives 
than false negatives 

Figure 3: Lowered uncertainty through 
more informative features. 

Criminal court example
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p-value

The p-value corresponds to the answer the question: what is the probability of 
the observed test statistic or one more extreme when H0 is true? 



www.R4biostats.com 51

p-value interpretation

 A very small p-value means that such an extreme observed outcome would be very 
unlikely under the null hypothesis.

 Usually the researcher fix a before experiment and then compare the p-value and 
takes a decision.

Conventions
P > 0.10 ⇒ non-significant evidence against H0 
0.05 < P ≤ 0.10  ⇒ marginally significant evidence against H0
0.01 < P ≤ 0.05 ⇒ significant evidence against H0
P ≤ 0.01 ⇒ highly significant evidence against H0 

https://en.wikipedia.org/wiki/Outcome_(probability)
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Fail to reject  H0 Reject H0 

H0  is true
 Correct action Type I error

FALSE POSITIVE 

probability 1-a a

H1 is true Type II error
FALSE NEGATIVE Correct action 

probability b power = 1-b

Power
1-b

Type II error
b

How to increase statistical power
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How to increase statistical power

Source: https://towardsdatascience.com/5-ways-to-increase-statistical-power-377c00dd0214

1) Raise significance level alpha (the WRONG way)
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How to increase statistical power

2) Switch from a 2-tailed test to a 1-tailed test (CORRECT if 
possible)

Source: https://towardsdatascience.com/5-ways-to-increase-statistical-power-377c00dd0214
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How to increase statistical power

3) Increase mean difference (or increase the effect size)

Source: https://towardsdatascience.com/5-ways-to-increase-statistical-power-377c00dd0214
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How to increase statistical power
4) Use z distribution instead of t distribution (appropriate when we know the 
population mean)

Source: https://towardsdatascience.com/5-ways-to-increase-statistical-power-377c00dd0214
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How to increase statistical power
5) Decrease standard deviation (using more precise measurements to 
have less error and less noise)

Source: https://towardsdatascience.com/5-ways-to-increase-statistical-power-377c00dd0214
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How to increase statistical power
6) Increase sample size (the most practical way)

Source: https://towardsdatascience.com/5-ways-to-increase-statistical-power-377c00dd0214
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Effect size

The effect size is an estimate of the difference between two or 
more groups.

The measurement of the effect size depends on the type of 
analysis your are doing:

1. Studying the mean difference between two groups

In this case you use a standardized mean difference (Cohen’s d)
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Effect size

Cohen’s d Effect size

0.20 Small

0.5 Medium

0.8 Strong
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Effect size
2) Pearson Correlation Coefficient: measuring the linear 
association between two variables X and Y. 

-1 = perfectly negative linear correlation between two variables
0 = no linear correlation between two variables
1 = perfectly positive linear correlation between two variables

Source: https://www.statology.org/effect-size/

r = 0.94 r = 0.03
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Effect size

r Effect size

0.1 small

0.3 medium

>0.5 large

Pearson Correlation Coefficient
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Effect size in different scenarios
Test Effect Size Small Medium Large 
All t-tests:
• one-sample t-test
• independent samples t-test 
• paired samples t-test

Cohen’s d

d = 

0.20 0.50 0.80

Difference between many means 
(ANOVA)

Cohen’s f

f =

0.10 0.25 0.40

Chi-squared test Cohen’s w

w= 

0.10 0.30 0.50

Pearson’s correlation coefficient Pearson’s 0.10 0.30 0.50

Linear Regression (entire model) Cohen’s  0.02 0.15 0.35

Source: https://en.wikipedia.org/wiki/Effect_size#Overview
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